Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules.
نویسندگان
چکیده
Transgenic tobacco (Nicotiana tabacum) lacking mitochondrial alternative oxidase (AOX) have been compared with wild-type (Wt) tobacco using two different systems, either suspension cell cultures or leaves. In both systems, a lack of AOX was accompanied by an increase in some anti-oxidant defenses, consistent with the hypothesis that a lack of AOX increases the mitochondrial generation of reactive oxygen species (ROS). In most cases, this increase in anti-oxidant defenses could more than offset the presumed increased rate of ROS generation, resulting paradoxically in a lower steady-state level of ROS than was found in Wt leaves or suspension cells. We also found that the amount of cell death induced by salicylic acid or nitric oxide correlated strongly with the level of ROS (irrespective of the level of AOX), while death induced by azide was dependent upon the presence or absence of AOX. These results suggest that susceptibility to cell death by signaling molecules (salicylic acid and nitric oxide) is dependent upon the steady-state cellular level of ROS and that AOX levels clearly contribute to this steady state, perhaps by influencing the rate of mitochondrial-generated ROS and hence the cellular level of anti-oxidant defenses.
منابع مشابه
The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants1[OPEN]
Mitochondria produce ATP via respiratory oxidation of organic acids and transfer of electrons to O2 via the mitochondrial electron transport chain. This process produces reactive oxygen species (ROS) at various rates that can impact respiratory and cellular function, affecting a variety of signaling processes in the cell. Roles in redox signaling, retrograde signaling, plant hormone action, pro...
متن کاملThe Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants.
Mitochondria produce ATP via respiratory oxidation of organic acids and transfer of electrons to O2 via the mitochondrial electron transport chain. This process produces reactive oxygen species (ROS) at various rates that can impact respiratory and cellular function, affecting a variety of signaling processes in the cell. Roles in redox signaling, retrograde signaling, plant hormone action, pro...
متن کاملنقش استرس اکسیداتیو در تکثیر بیرویه و مرگ سلولی
Abstract During normal cellular activities Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are produced. In addition to beneficial functions they play a critical role in cell death and prevent apoptosis. Every cell is equipped with an extensive antioxidant defense system to combat the excessive production of active radicals. Oxidative stress occurs with destruction of cellu...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 47 11 شماره
صفحات -
تاریخ انتشار 2006